
TRANSPORT THEORY AND STATISTICAL PHYSICS, 23(5), 67 1-700 (1994) 

OPTIMIZATION OF SOLAR RADIATION INPUT IN FOREST 
CANOPY AS A TOOL FOR PLANTING/CUTTING OF TREES 

Yu. Knyazikhin', (l) A. Marshak, (1) D. Schulze, (1) R. B. Myneni (2) 

and G. Gravenhorst. (l) 

(l)Institut fur Bioklimatologie, Universitat Gottingen, Busgenweg 1 , 
3400 Gottingen, Germany. 

@)Mail Code 923, NASA - Goddard Space Flight Center, 
Greenbelt, Maryland 20771, USA. 

ABSTRACT 

The problem of optimal planting and cutting of industrial wood is consid- 
ered. The criterion for optimization is to maximize the capture of solar energy 
by a plant stand. The optimization algorithm is based on variation of solar 
radiation in tree crowns caused by variations in tree density (planting and 
cutting of trees) and size (tree growth). An equation for optimal value of tree 
density is derived. Numerical results are presented to illustrate the influence 
of canopy parameters on the input coefficients of the derived equation. 

1. INTRODUCTION 

In a plant canopy, the above ground biomass determines the productivity of 

industrial wood. Solar radiant energy absorbed by trees is converted to woody 
biomass through photosynthesis. In general, the supply of radiant energy sets 
a limit to potential production, but if light is not a limiting factor then other 
variables may be determinant for the actual pr0duction.l From this viewpoint, 
a plant stand may be appropriately conceptualized as a solar energy trap - the 
higher the amount of solar energy it captures, the greater is its photosynthetic 
capacity. The capacity of a forest canopy for capture depends upon planting 
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672 KNYAZIKHIN ET AL. 

pattern of trees as well as cutting of trees (i.e. variations in tree density) 
in a stand.2 Under condition of optimal nutrition, soil water availability and 
temperature, this property gives us a possibility to influence the production of 
industrial wood. A question then arises as to how the capture of solar radiant 
energy by a plant stand can be maximized. This is the topic of our research. 

The amount of intercepted photosynthetically active radiation (PAR) by 
a stand as well as canopy photosynthesis can be evaluated once solar radiation 
field in the tree crowns is known.2~3e4 Thus, the problem of plant optimization 
may be reduced to examining the dependence between the distribution of 
solar radiation inside tree crowns and various schemes of tree planting/cutting. 
Therefore, we begin with a description of a three-dimensional model for the 
canopy radiation regime2 (Section 2). In Section 3, the optimization problem 
is formulated in terms of optimal control theory. In this section we closely 
follow the monograph by Pontryagin et a1.6 

In a given phytomedium, the radiation regime depends on the incoming 
radiation field. Therefore, the description of variations in solar radiation in- 
side the tree crowns can be reduced to examining the changes in the incident 
radiation at the crown boundary caused by the following three factors - meteo- 
rological changes (clouds, sun position, etc.), variations in tree density (cutting 
and planting of trees) and size (growth of trees). The meteorological changes 
are assumed known and serve as input for our model. Therefore, we begin 
with variations in radiation input at the crown boundary caused by variations 
in tree density and size (Section 4). To describe tree illumination we use the 
concept of critical arrangement of trees. It is a qualitative characteristic of the 
forest and establishes the existence of several regimes of incident radiation at 
the tree crown level. The next step is to introduce a quantitative characteristic 
of the process to be maximized. For examples, Myneni2 uses canopy photosyn- 
thesis as the value to be maximized and so the objective of the optimization 
is to maximize canopy photosynthesis. The amount of intercepted radiation 
by plant ~ t a n d ~ , ~ - e  is another example of the parameter for maximization. 

In spite of the diversity of possible parameters for maximization, they all 
have certain properties (see Definition in Section 4) in common: sensitivity to 
changes in tree illumination (or, the critical arrangements of trees) and the 
amount of trees in a plant stand. It will be shown (Section 5) that only these 
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TOOL FOR PLANTINGKUTTING OF TREES 673 

properties determine the algorithm for plant optimization. Therefore, we shall 
not discuss the physical sense of the process but focus on examining the above 
mentioned properties. To achieve this goal, we shall use the concept of the 
objective functional (See Definition in Section 4). 

The dependence of the objective functional on the tree density is investi- 
gated in Section 5. It will be shown (Theorem 3) that this dependence consists 
of a linear and a nonlinear part (see Fig. 3 for illustration). This structure 
is allowed for different planting patterns, boundary conditions (Fig. 4), soil 
and leaf optical properties and canopy architecture (See Figs. 5-6), i.e., it 
may be interpreted as the invariant property of a forest system. The length 
of the linear part and the angle of its inclination may serve as a quantitative 
characteristic of such a system. 

In Section 6, we present a solution to the optimization problem formulated 
in Section 3 for the case of a square planted stand. Several numerical results 
are presented in Section 7. 

2. THE THREE-DIMENSIONAL RADIATIVE 
TRANSFER MODEL 

We consider a forest canopy consisting of N identical “mean” trees. The 
domain, V, where the trees are located is a parallelepiped of dimensions X S ,  

Ys and zs. The height, Zs, of the plant stand coincides with the tree height. 
We idealize this canopy as a turbid mediumg and follow the formulation of 

Myneni.2310 In this description nonlaminar foliage is disregarded and only flat 
leaves are considered. For such a leaf canopy, the steady-state monochromatic 
radiance distribution function I(?, Q) in the absence of polarization, frequency 
shifting interactions, and radiation sources within the canopy, is given by the 
radiative transfer equation 

The position vector T’ = (r,y,z)  is expressed in Cartesian coordinates with 
its origin, 0, at the top of the forest canopy and the 02 axis directed down 
towards the ground. The unit direction vector - ( p , 4 )  has an azimuthal 
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674 KNYAZIKHIN ET AL. 

angle 4 measured in the (XY) plane from the positive x-axis in a counter- 
clockwise fashion and a polar angle e = C O S - ~ ( ~ )  with respect to the OZ axis. 

The total interaction cross section, u(r',Q), is defined such that the proba- 
bility that a photon while traveling a distance ds hits a leaf isll u(r ' ,Q)ds 

where u ~ ( 4  is the leaf area density and G(r',Q) is the projection of unit leaf 
area at r' onto the direction of photon travel 2, namely$, 

where 2r-l gL(r' ,&) is the probability density of a leaf at r' with a normal 
directed outward from its upper surface into a unit solid angle about QL - 
(pL,dL) .  The functions UL and gL characterize the architecture of the forest 
canopy and can be parameterized with simple models or from empirical data. 
An example of the leaf area density, uL(F) ,  modelled by the quadratic functiong 
(also see Section 7) is presented in Fig. la .  

The differential scattering cross section u8(r',Q'-+Q) may be expressed in 
terms of a leaf scattering phase function f(&,Q'-+Q). For a leaf with outward 
normal QL, this phase function is the fraction of the intercepted energy, from 
photons initially traveling in direction Q', that is scattered into a unit solid 
angle about direction1' 2. The volumetric rate at which photons traveling in 
- 0' are scattered into a unit solid angle about Q, by leaves at r'of all orientations 
QL equal the differential scattering cross-section; thus, u, is 

where qr', Q'-+Q) is the area scattering phase function originally introduced by 
Ross9. 

A photon can either be specularly reflected at the surface of the leaf or can 
undergo reflection and refraction inside the leaf. Specular reflections from the 
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TOOL FOR PLANTINGICUTI’ING OF TREES 675 

leaves originate at the interface between the air and the cuticular wax layer’z, 
and its magnitude can be computed from the incidence angle, the index of 
refraction and characteristics of the surface wax layer. On the other hand, a 
photon once inside the leaf, will undergo multiple reflections and refractions 
at the numerous cell wall-air interfaces, and can emerge in any direction with 
a probability given by Lambert’s cosine law. The above picture of photon-leaf 
interaction is deduced from careful measurements13J4 and theoryg. 

In view of the above discussion, the leaf scattering phase function may be 
written as 

where fD and fsp are the leaf phase functions for diffuse scattering in the leaf 
and specular reflection at the leaf surface, respectively. A simple, but realistic 
model for f~ was proposed by Ross and Nilson16. In this model, a fraction 
PLD of the intercepted energy is reradiated in a cosine distribution about the 
leaf normal. Similarly, a fraction t L D  is transmitted in a cosine distribution 
on the opposite side of the leaf. This bi-Lambertian model can be described 
mathematically as 

The leaf phase function for specular reflection is determined by the wax 
layer on the leaf surface and it depends on the following three factors12: the 
angle, a’, between the incident ray, Q‘, and leaf normal, QL, the wax reflec- 
tion index, v ,  and the smoothness of the leaf surface, IG. Hence, the specular 
component can be written as16 

Here F is the Fresnel parameter, indicating the amount of speculary reflected 
energy averaged over the polarization states 
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676 KNYAZIKHIN ET AL. 

+ 
sin2 (a' + 0)  1 tan2(a' - 0) 

tan2(a' + 0)  

where the reflection angle can be found from Snell's law as 0 = sin-'(v-l sina). 

The function K defines the correction factor for specular reflection (0 5 K 5 1) 
and the argument IC 2 0 characterizes the smoothness of the leaf surface. The 
vector a* = Q*(Q',&) defines the direction of specular reflection. 

The leaf canopy is illuminated from above by both a direct monodirectional 
solar component [in direction Q, - (po ,&) ,  po > 0; of intensity 10] as well as by 
diffuse radiation [in directions Q - (pT +), p > 0; of intensity I d ] .  Let S be the 
part of the canopy boundary including the top and lateral surfaces. The edges 
of the canopy parallelepiped, v, must be excluded17 from the surface S. The 
incident radiation field at the surface S is 

where ns is the unit vector of the external normal at the point Fs of the surface 
S; &(&) = 10 if there is no hindrance for direct solar radiation to reach the 
point FS and Io(r's) = 0 otherwise. To calculate the diffuse component of the 
incident radiation field, we use the radiative transfer model in broken clouds 
proposed by Vainikko and Avaste.18Jg 

At the bottom of the canopy, a fraction of the radiation is assumed to 
be reflected back into the canopy by the ground according to the distribution 
function ' y b ,  i.e. 

where ?b is a point on the ground and 3 is the outward unit normal at this 
point. 

The boundary conditions, soil and leaf optical properties and architecture 
of the forest canopy are assumed known inputs. Thus, the radiative transfer 
in the forest canopy is fully defined. This model of canopy radiation regime 
provided good agreement with radiation measurements in a poplar stand.2 

We represent the solution of the problem (1)-(3) as the sum of two com- 
ponents, viz. I(<Q) = &i?(<a) + fdi3(<@, where Id<, and 1dG3 are, respectively, 
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TOOL FOR PLANTING/CUTTING OF TREES 611 

the intensities of direct and diffuse solar radiation. The intensity of direct 
solar radiation Idir(F,Q) = Qo(F)6(Q-&) where Qo(.') is the probability density 
that a photon in the direct solar radiation will arrive at r' along Q,, without 
experiencing a collision, i.e., 

Here l[<Q] denotes the distance between the point r' and the forest bound- 
ary along the direction -Q (i.e. the point ?- l[<Q]Q belongs to the canopy 
boundary). The intensity of diffuse radiation satisfies the integro-differential 
equation 

and boundary condition 

The terms u,QO and +yapoQo on the right-hand side of Eq. (5) may be inter- 
preted as the external radiation sources created by photons in the direct solar 
radiation arriving at T' and 6 along without experiencing a collision and 
which is scattered in the direction Q. 

We introduce the Banach space, M(V x 4 r ) ,  of measurable and almost 
everywhere bounded functions on the set V X ~ T  = {(CQ)] FE v, Q - (p ,  4), -1 5 
p 5 1, 0 5 4 5 2 r } ,  in which the norm is defined by the equality 1 1  I 11 
= ess S U ~ ~ ~ ~ ~ J I ( T ' , . Q ) ~ .  The functions u and u, are assumed to be positive 
measurable and almost everywhere bounded, respectively, on the sets v x 4r 

and v x 4r x 4 r  and they satisfy the following inequality: 
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678 KNYAZIKHIN ET AL. 

Fig.1 The three-dimensional distribution of leaf area density and radiance 
distribution function at z = 1.6 m. Here 80 = 60’; = 0; rO(Ts) = lo; 
XC = YC = 2m; ZC = ZS = 5771; p = 2 5 0 0 e  and L = 15. Other 
parameters are described in Section 7. a): leaf area density, z (L( fJ ;  b): 
J d + ( q  = f p > o  &ir(<fi)lpldQ; c):  Ji(q = fp>o Ii(<fi)lpldfi; d): Jmt(q = 
J d i r ( f J r  + Ji(q. 

Following the technique proposed by Germogenova17 it is possible to show that 
these properties guarantee the existence and uniqueness of the solution to the 
problem (4)-(5) in the Banach space M ( V x 4 s )  and this solution depends contin- 
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TOOL FOR PLANTINGICU’ITING OF TREES 679 

uously on initial data. For numerical solution of the problem (4)-(5) we use the 
method of successive orders of scattering approximation. The rate of conver- 
gence can be evaluated as maxwL(&,,Q’), where wL(Q~,Q’)  = J,, ~ ( Q ~ , @ - + Q ) ~ Q  

is the leaf albedo.16 In the photosynthetically active region of the solar spec- 
trum, leaves usually absorb 90% of the intercepted irradiance. Thus, the 
solution can be approximated reasonably well by single scattering, I ~ ( <  a). 
An example of the three-dimensional radiance distribution function in a plant 
canopy integrated over the lower hemisphere with weight Ipl is shown in Figs. 
Ib-Id. 

3. STATEMENT OF THE OPTIMIZATION PROBLEM 

In order to describe the various radiation regimes in a plant stand we 
introduce the set, D C Idic @ M ( V  x 4m) = {Idir + v1 v E M ( V  x 4m)}, of various 
solutions to the problem (1)-(3) corresponding to the various values of a, a., 
Id ,  lo and &,. The radiation regime of a plant stand changes with time due 
to changes in I d ,  10 and & (meteorological factors), and a and s8 (due to 
changes in tree density and size). The meteorological changes are assumed 
known and serve as input data for our optimization algorithm. By varying the 
tree density it is possibly to influence the course of changes in the plant stand. 
We introduced the control function, u(t ,z ,  y), whose value is 1 if there is a tree 
at the point (z,y) on the ground at time t ,  and 0 otherwise. The set u of the 
control functions is our admissible controls.b Thus, the total interaction and 
differential scattering cross sections depend on the control function. 

Besides tree density, tree growth determines the changes in the total in- 
teraction and differential scattering cross sections. Tree growth at any instant 
of time is assumed characterized by n parameters, g(t)=(gl(t), g z ( t ) ,  . . . ,gn(t)) 

(for example, the functions of stem and crown growth, dry biomass, tangen- 
tial stresses along the stem counter and so on) and the vector function, g(t) ,  

satisfies a system of differential equations 

where fi is, for each fixed vector (t ,  91, ga,. . . , gn), a functional defined on the set 
U x D. The functionals and the initial values, go, of the vector function, g(t) ,  
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680 KNYAZIKHIN ET AL. 

are assumed to be known and serve as input data for our optimization model. 
Thus, the total interaction and differential scattering cross sections depend on 
u E U and ~ ( t ) .  

We idealize our plant stand as a system whose state at any instant of time 
is characterized by the radiation regime, I E D ,  and the growth vector J E Rn. 

The set R” x D of the variables, ( g , I ) ,  is the space of the plant stand states. 
The transport equation and the system of differential equation (6) govern 
changes in the plant stand. We assume that the joint system of equations 
(1) and (6) with boundary conditions (2), (3) and (7) has a unique solution, 
< p(t ,  u),  ~ ( t ,  u) >, for any admissible control function u E U. 

Let u(t) be an admissible control and let ~ ( t )  and I ( t )  be the corresponding 
solution of the joint system described above. We term the couple, < ~ ( t ) ,  I ( t )  >, 
a trajectory corresponding to the control u E u. Every trajectory has its initial 
and final positions. The initial position, < z(O), I (0 )  >, $) E Rn, I(0) E D, 
satisfies the boundary conditions (7) and (2)-(3), and describes the initial state 
of the plant canopy. The final position, < y((T), I ( T )  >, describes a desired state 
of our plant canopy which is assumed to be given by a system of relationships 

and functionals 

The functions, & : Rn -+ Rm, and functionals, @i : D + R’, are assumed given. 
We introduce the set of final states of the plant canopy, ST = RT x L&, where 

We says that the admissible control, u(t) ,  transfers state from the position, 
< yo, 10 > E  Rn x D ,  to the final state, ST, if the trajectory, < B(t), I ( t )  >, 
corresponding to the control, u E U, has initial position, < F(O), I(0) > = 

< yo, lo >, and its final position satisfies the condition, < g(T),  I(?’) > E ST. 
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TOOL FOR PLANTING/CU?TING OF TREES 68 1 

Let us now suppose that we are given another functional, fo(t, u, 7, I) which 
is defined and is continuous on all of Rn+l x D x U. Then, the optimization 
problem can be formulated in terms of the theory of optimal processes as 
follows (The problem with fixed left-hand and variable right-hand endpoints, 
See Reference 5).  

In  the space of the plant stand states, Rn x D, the position, < yo, I0 >, and 
the set, ST = RT x DT, are given. Among all the admissible controls, u = u(t), 

which transfer the plant canopy state from the position, < ao, I. >, to the final 
state, ST, ( i f  such controls exist), find one for which the integral functional 

takes on  the largest possible ualue. Here, < g( t ) ,  I(t) >, is the trajectory corre- 
sponding to the control, u E u, with initial position < go, 1 0  >. 

Note the time, T, is not fixed. We only require that the trajectory 
< g(t), f ( t )  >, should be in the position < ?o, I. >, at the initial time, and in the 
position, ST, at the final time. 

Usually, the functional, fo, describes a quantitative characteristic of a pro- 
cess to be maximized. Determining it as a continuous functional on the set, 
Rn+' x D x U, we introduced a rather wide set which does not take into ac- 
count the features of the problem of plant stand optimization. The next step 
is to restrict the set of continuous functionals to the one which describes stand 
states qualitatively and quantitatively. 

4. CRITICAL ARRANGEMENTS AND 
OBJECTIVE FUNCTIONAL 

The problem of optimal planting of industrial woods is equivalent to the 
investigation of the dependence between the distribution of solar radiation 
inside a plant stand and various schemes of tree planting. The radiation field 
in a certain stand at a fixed time depends mainly on the incoming radiation 
field. Therefore, the description of the variations of solar radiation inside tree 
crowns can be reduced to examining the changes in the incident radiation at 
the crown boundary. 

The total alteration in the incident radiation at the crown boundary is 
caused by the following three factors - meteorological changes (clouds, sun 
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682 KNYAZIKHIN ET AL. 

SOLAR RADIATION 
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I I I I  
Fig.2 Arrangement of trees. a):ante - CAF; b): post - CAF and ante - AS; c): 

post - AS. 

position, etc.), variations in tree density (cutting and planting of trees) and 
size (growth of trees). The meteorological changes are assumed known and 
serve as a boundary condition (2) for the radiative transfer equation (1) i.e. 
input data for our model. Therefore, we exclude it from our analysis in Sections 
4 and 5. Thus, the time variable is fixed. At each fixed time, t ,  the control, 
u E U, determines the arrangement of trees in the stand. Here, we examine the 
dependence between incident radiation at the tree crowns and the controls, 
u E U, and the tree size at fixed time, t. To do so, we introduce the concept of 
“critical arrangement” of trees. 
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TOOL FOR PLANTING/CUTI’ING OF TREES 683 

The incident radiation intensity at the boundary of tree crowns is not 
dependent on tree density and size provided the trees are far enough apart 
spatially and when there is no cross-shading between them (See Fig. 2). On 
the other hand, if the trees are close to one another, the incident radiation 
changes depending upon the tree density and size. It means there should be 
some critical tree arrangements at which a transition takes place from the 
%on-sensitive state” to a “sensitive state”. We define such a transition as 
Critical Arrangement of the First order ( C A F ) .  

Let us consider the post - CAF plant stand. We identify two situations 
in this case (Fig. 2). In the first one, a stand is dense with trees which are 
sufficiently close to one another (post - CAF)  but open spaces between the 
trees are evident. In this case, the radiation field incident on the tree crowns 
is influenced by tree density and size in a complex manner. It also results in 
changes in the radiation field inside the crown. The second arrangement of 
trees is a stand with trees having no open spaces between them. In this case, 
tree density does not influence the incident solar radiation on tree crowns 
because only the top level is free for incidence and the total boundary of 
trees can be idealized as a “rough surface”. This arrangement of trees which 
generates the “rough surface” can be termed as the arrangement of second 
order (AS). Note we do not identify the tree arrangement at which a transition 
takes place from the first to the second. 

We use the “critical arrangements” for idealizing our plant stand as a 

system capable of being in three statuses: ante - C A F ,  AS as well as between 
C A F  and AS.  The transition from one status to another may take place as 
a result of tree growth (changes in tree size) as well as variations in tree 
density (planting and cutting of trees). The ante - CAF status provides the 
most favourable conditions to capture solar energy. An arrangement of trees 
between post - C A F  and A S  corresponds to the situation when tree illumination 
changes due to tree growth. It leads to competition for capturing more sunlight 
which, in its turn, may involve the changes in the growth rate, quality of woody 
biomass as well as death of some trees. The A S  status can be interpreted as 
the final result of tree competition. 

With the above in mind, we idealize the plant stand as a system consisting 
of M subsystems of trees. Each subsystem can be in one of the statuses 
described above. The transition from one to another may be a result of cutting 
and/or planting of trees as well as tree growth. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
A
N
L
 
R
e
s
e
a
r
c
h
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
3
:
4
5
 
5
 
N
o
v
e
m
b
e
r
 
2
0
0
8



684 KNYAZIKHIN ET AL. 

The concept of “critical arrangement” describes qualitatively the status 
of a forest stand and is not enough for solving the problem of Optimization 
because it is not sensitive enough to variations in planting pattern, i.e., a plant 
stand may retain the same status while the tree density and size vary simulta- 
neously. Therefore, the next step is to introduce a quantitative characteristic 
that is sensitive to both the transition from one state to another and the lo- 
cation of trees in the plant stand. For this purpose we use the concept of the 
objective functional. 

Consider a plant stand. Let v be the domain where the trees are located. 
Let I(?,Q) be the radiance distribution function in the plant stand. We use 
the symbols 6, and v’ to denote subdomains of the domain v. 

The positive functional, P(f,V‘) is said to be an  objective Definition. 
functional if the f o l l o w ~ n ~  properties 

a) P(f,V‘) = 0 i f  the szlbdomain V’ has no common points with tree 

b) P(Il ,V’) 1 P(12,V’) if Il(?,Q) 2 12(F,Q) ,  T‘ E V’, Q E 47r; 

c) p(r,v’) = Cj”=, P(I,v;.)  i f  V’ = uyZl b, 6 n vj = 0; 

The interpretation of this definition is the following. The first condition 
allows only the radiation inside the tree crowns. The second describes sen- 
sitivity to variations in the radiation field inside the plant canopy. The last 
condition obliges the objective functional to be sensitive to the number of trees 
in the plant stand. 

crowns; 

hold. 

Canopy photosynthesis2 is one example of the objective functional. Its 
use for optimization is quite natural. Indeed, the higher the value of canopy 
photosynthesis, the more active is the conversion of solar radiation to woody 
biomass. But this approach has two major deficiencies. First, it is computa- 
tionally intensive. Second, the algorithm for solving this problem requires a 
model of leaf photosynthesis in addition to the parameters described in Section 
z .  

It has been shown that the growth rate of several vegetation canopies 
increases linearly with increasing amounts of intercepted photosynthetically 
active Therefore, the value of total amount, pa, of radiation ab- 
sorbed by a plant stand 
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TOOL FOR PLANTINGICUTTING OF TREES 685 

can be taken as the objective functional. Here ua(F,Q) is the absorption coef- 
ficient. This value satisfies the definition given above. 

Two other examples of the objective functional are: 

P,(I ,V) = 1 u(?,Q)I(?,Q)d?dQ, PK(I ,V) = 1 1 K(F)I(?,Q)dFdQ, 
v 4* v 4a 

(9) 

where u(< Q) is the interaction cross section and 

1, 

0, otherwise. 

if ?belongs to the tree crown; 
K(?) = 

The first functional, Po, is the total amount of intercepted radiation. Let 
u8, = u - ua be the scattering cross section. In the PAR-region of the solar 
spectrum, leaves usually absorb c.a. 90% of intercepted radiationlo and so the 
ratio is sufficiently small. It follows from the relationships 

that the functional Po is close to the functional P,. The second functional, PK, 

can be used for optimization of a plant stand with random leaf distribution in 
the tree crown. 

Besides these examples, there is a rather wide set of objective functionals. 
The choice depends on specific features of the plant stand and the desired 
accuracy as well as computer time. 

5. SOME PROPERTIES OF THE OBJECTIVE FUNCTIONAL 

In this Section, we examine the behavior of the plant stand with respect 
to tree density and examine how best the CAF can be calculated (Theorem 
3). Theorems 1 and 2 serve as the auxiliary results. 

Consider a leaf canopy consisting of N individual trees. The trees are 
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686 RNYAZIKHIN ET AL. 

assumed identical to one another at any fixed time. We denote by v and % 

the domain of the plant stand and the domain of a single crown, respectively. 
Let us consider two identical trees but the first is detached, the second 

one in a stand. Radiation incident on the crown of the isolated tree and the 
boundary of the plant stand is assumed equivalent. Let &,(?,Q) and Ik(r’,Q) be 
the radiance distribution function in the crown of the detached tree and in the 
crown of the kth tree in a stand. 

Theorem 1. p( Io ,%)  >_ p( Ik ,&) .  

This theorem allows us to compare the radiation field in the crowns of the 
two trees. Let the canopy photosynthesis be the objective functional. In this 
case, Theorem 1 has a simple physical interpretation: the photosynthesis of 
the detached tree is not less than the photosynthesis of an identical tree but 
which is located in a stand. 

Proof. Radiation incident on the crown of the tree in a stand is de- 
scribed by the solution, I(?,Q), of transport equations (l), (2), (3) where 
r‘ is on the crown boundary. It follows from the maximum principle17 that 
I(?,Q) 5 I(?- l[?,Q]Q,Q) where l[?,Q] denotes the distance between the point r‘ 

and the boundary of the plant stand along the direction -n. It m e a d 7  that 

Io (<a)  >_ I&(?,,). Using the definition of the objective functional we derive 
the desired inequality. Thi s  completes the proof. 

Let I(?,@ be the solution of the radiative transfer problem (1)-(3) and 
I’(<Q) be the function 

I(?,Q), if r‘ E v’; 
otherwise. 

I’(F,Q) = 

In other words, the function I’(?,Q) is the radiance distribution function in the 
subdomain, V‘, of the plant stand. 

Theorem 2. P(I,v’) = P(I‘,v’). 

This theorem shows that the objective functional depends on the subdo- 
main, V‘ (for instance, the crown of a tree), and the radiance distribution 
function in it only. 

Proof. The equality I(?,,) = f(?,Q), ? E V’ is equivalent to the system 
of the inequality: I(?,Q) 2 P(?,Q) and I(?,Q) 5 I / (<Q),  r‘ E v’. It follows 
from the property b)  (See Definition) that both inequalities P ( I ,  v’) 2 &‘(It, v’) 
and P ( I , v ‘ )  5 ~ ( I ’ , V ’ )  are valid. This means that P(I ,v’)  = P(I’,v‘). This 
completes the proof. 
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Theorem 3. The  plant stand maintains ante - CAF status through varia- 
t ions in tree density i f  and only i f  the objective functional is linear with respect 
t o  the tree density,  p = +-, i . e .  

where ~0 i s  the domain of a tree crown. 
This theorem provides the algorithm for finding the critical arrangement 

(of the first order). For this purpose we evaluate dependence of the objective 
functional against tree density (Fig. 3, for instance). It follows from Theorem 
3 that this dependence consists of two parts; a linear and a nonlinear part. The 
point at which the linear response changes to a nonlinear response corresponds 
to the tree density of a CAF stand. Thus, at every fixed time, we can calculate 
the critical arrangement (of the first order) of trees. 

We emphasize that this dependence of the objective functional maintains 
its structure (linear and nonlinear parts) for different planting patterns, bound- 
ary conditions as well as soil and leaf optical properties, i.e., Theorem 3 may 
be interpreted as an invariant property of a plant stand. The length of the 
linear part and the angle of its inclination are sensitive to changes in model 
parameter values (See Section 7). 

Proof. We consider ante-AS stand. Let r;(F,Q) be the radiance distribu- 
tion function in the crown of the kth tree, 15 k 5 N. The index N shows that 
there are N trees in the stand. It follows from the definition of the objective 
functional [property c)] and Theorem 2 that 

where 

Let us consider the ante - CAF stand. It means the tree crowns are illuminated 
identically. Hence, 
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688 KNYAZIKHIN ET AL. 

Here ro(F,Q) is the radiance distribution function in the crown of a tree. Vari- 
ations in tree density (or N) do not lead to alterations in tree illumination 
while the plant stand keeps the ante - C A F  status. It follows from this that 
4“) = p(ro,vo) = P(r,vo) = CmSt. 

Let the objective functional be a linear function with respect to tree den- 
sity, p = &. Under this condition, the function +(N) is constant: +(N) E c. 
For N = 1,2, we have 

Taking into account the inequality P(r:,vo) 6 P(r:,vo), i = 1,2 (See Theorem 
l), it is possible to obtain 

The relationship holds only if P(r:,vo) = P(rg,&) = P(I: ,&) = c. In a similar 
way, it can be proved that &‘(I!,&) = C ,  k = 1,2, ..., N ,  N = 3,4,  ..., N,,,. It 
means the plant stand is the ante - CAF state because the objective functional 
of a tree (P(Ip,Vo)) is not sensitive to variations in tree density (or N). This 
completes the proof. 

Let us consider the post - CAF stand. It follows from Theorem 3 that a 
change in tree density leads to a nonlinear response of the objective functional. 
Two features in the behavior of the objective functional can be observed (See 
Fig. 3) - the considerable and weak response to variations in tree density. The 
physical meaning of this features is: the first is caused by considerable changes 
in tree illumination; the second shows that the objective functional changes 
takes place at the expense of changes in the phytomedium. 

In the calculation presented in Fig. 3, we simulate the changes of the 
phytomedium as follows. The tree size is constant. The leaf area density 
of a domain obtained with intersection of the trees is the sum of the leaf 
area densities of intersected trees. Therefore, there are no changes of the 
phytomedium in the ante - AS stand used in these calculations. 

Thus, there are three parts in the behavior of the objective functional with 
respect to tree density. The first is the linear function and corresponds to the 
ante - C A F  stand. The second is a nonlinear response but “weU”-sensitive to 
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variations in tree density. It corresponds to both the post - CAF and ante - A S  

stand. The last part (“asymptotic region”) is weakly sensitive to variations in 
tree density and denotes the post - A S  stand. 

6. EQUATION FOR OPTIMAL VALUE OF TREE DENSITY 

In this section we give an example for the solution of the optimization 
problem formulated in Section 3. We suggest additionally our plant stand 
consists of one (M = 1) subsystem of trees that are square planted. Cutting 
of trees (i.e. the transition from post to ante-status) as well as planting of 

trees except the initial ones are excluded from our consideration. With this 
assumption, the controls do not depend on the time-variable and any control 
can be completely described with one parameter - tree density, p = &. 
Therefore, the set, U, = {pl p 5 w } ,  can be taken as admissible controls. Here 
w is a sufficiently large number. The final states of the plant canopy, ST, are 
given as 

We assume that tree growth, v(t), does not depend on tree density, i.e., 

Let us consider the problem: find a n  admissible control, p E u,, which 
transfers the plant canopy state f r o m  the position < yo, I. >, t o  the state, ST, 
and which in doing so imparts a maximal value t o  the functional (8), where fo 
i s  the  objective functional.  

In this example the radiation field in the canopy at the final time, T, does 
not depend upon the tree density. It means that the set, DT, contains the 
ante - CAF plant stand only. Because the transitions from post to ante-status 
are excluded from our consideration, this example has a solution if and only 
if the plant canopy keeps the ante - CAF status for any t E [ o , q .  Thus, the 
problem can be formulated in the following equivalent form: How should the 
trees in a stand be initially ante-CAF planted such that the plant stand reaches 
the CAF-status and the functional (8) attains i ts  maximum. 

The optimally planted trees realize the most favourable conditions in tree 
illumination. We shall start consideration of our problem without taking into 
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690 KNYAZIKHIN ET AL. 

account the meteorological changes, i.e I d ,  10 and & are fixed. Then we discuss 
how they can be included in the optimization model. 

We denote by TCAF(P) the time for achieving the CAF status by the stand 
with tree density, p, being initially ante-CAF planted. If the ante-CAF stand 
is unable to transit into a CAF stand (the trees are far enough apart spatially) 
then the value of TO,&) is assumed to be equal to infinity: TCAF(P) = 00. For 
the post - CAF stand, the value of T C A F ( ~ )  is equal to zero: T C A F ( ~ )  = 0. 

The plant stand keeps the ante - CAF status when t 5 T C A F ( ~ ) .  It means 
the value of the final time, z’, should satisfy the equality: T = TCAF(P).  It 
follows from Theorem 3 that the objective functional appearing in (8) as the 
integrand is a linear function with respect to the tree density, p ,  for each fixed 
t .  This allows us to express the problem as 

Here we include the variables, t ,  and i j  in the argument list of the objective 
functional. Using the standard Lagrange technique, it is possible to obtain the 
equation for the desired value of the tree density 

There is a special case in the behavior of this equation. It is obvious that 
the function ~ ( p )  5 o satisfies the expression (11). It means that every value of 
tree density corresponding to the past-CAF stand is a solution of the equation 
(11). However, it cannot be taken as the solution of the problem (10) because 
of losing the transition from the ante - CAF to the CAF status by a plant 
stand. Therefore, the tree density, p,  should satisfy both equation (11) and 
the inequality 

For the purpose of calculating the function TCAF(P) numerically, we derive 
another form for problems (11)-(12). To do so, we replace the variable, t = 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
A
N
L
 
R
e
s
e
a
r
c
h
 
L
i
b
r
a
r
y
]
 
A
t
:
 
2
3
:
4
5
 
5
 
N
o
v
e
m
b
e
r
 
2
0
0
8



TOOL FOR PLANTlNGlCUlTING OF TREES 69 I 

TO,&), in the equation (10). Resolving the expression t = TCA&) with respect 
to the variable p and accounting for the rule of differentiating inverse functions 
as well as the formula (hp)‘ = 5, equation (11) for the problem at hand can 
be transformed to 

Here p ( t )  = ~;&(t)  is the inverse function to T C ~ F ( ~ )  (i.e. Tcap(p(t)) = t ). The 
interpretation of the function p(t) is the following. Let us consider a detached 
tree at time t during its growth. The value p(t)  is the tree density of the CAP 

plant stand consisting of trees similar to the isolated tree under consideration. 
As a result of this we have derived two equations. Both allow determina- 

tion of the optimal value of tree density. The central question in the problem 
of radiation optimization is the evaluation of the objective functional, p( t ,  I ,  V ) ,  

and the function p ( t )  as values of time, t. On the basis of this, one can cal- 
culate every value occurring in (13) (or (10)-(12)). Indeed, it follows from 
Theorem 3 that the value of the function p(t )  = T&(t) is the point, p’,  along 
the tree density axis at which the dependence of the objective functional, 
P ( ~ , I , v ) ,  on tree density changes from the linear part to the nonlinear part, 
and p ( t , I , x )  = pw = eonst, p 5 p * .  

The solution of the transport equation underlies the calculation of the ob- 
jective functional. Therefore, the algorithm for solving the radiative transfer 
equation is the kernel of the algorithm for plant stand optimization. Note that 
the calculation of the radiation field in a plant canopy is an iterative proce- 
dure. Thus, fast methods for solving the transport equation are an extremely 
important development for the purpose of plant stand optimization. 

It will be recalled that the equation for optimal value of tree density is 
derived without taking into account the meteorological changes. They may 
be included by means of applying a statistical technique to describe variation 
of the objective functional due to changing meteorological conditions. We 
approximate the objective functional, p( t ,  I, v), by piecewise constant function, 
~ ( t , l ,  v), with respect to the time-variable: F ( t , I , V )  = Pi, t E (ti-l, t i ] .  A 
period of several weeks may be taken as the time-interval ( t i - l , t i ] .  In the 
capacity of pi we take the mean objective functional 

- 
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692 KNYAZIKHIN ET AL. 

Here R(I,p) is the mean value of the daytime variation of the objective func- 
tional; 10, Ic  and Ib are the daytime variations of the radiance distribution 
function in plant stand for clear sunny, densely cloudy and broken cloudy 
days; mi0 and mi, are the mean number of clear sunny and densely cloudy days 
in the time-interval (ti- l ,  ti]; is the total number of days in the time interval 
of interest. We define the value, R(I,p),  as a linear function with respect to 
tree density, p .  The length of the linear part is equal to the mean length of 

daytime variation of the linear part of the objective functional, p(t ,  I ,  V ) .  The 
angle of its inclination is the mean angle of daytime variation of the angle, 

. Note that instead of the piecewise approximation discussed 

above, the piecewise linear approximation of the objective functional 

may be used as well. 
Thus, consideration of meteorological factors into the optimization prob- 

lem allows us to use the concept of mean objective functional. The mean 
critical tree arrangement of the first order can be determined as the point 
at which dependence of the mean objective functional against tree density 
changes from a linear function into a nonlinear one. The optimal value of tree 
density can be found by solving equation (13) (or (10)-(12)) once the mean 
functions p ( t )  and p(t ,  I ,  &) are known. The problem of specifying a strict def- 
inition for the mean objective functional is the topic of a special investigation, 
and hence, we shall leave it for a detailed analysis at a later time. 

7. NUMERICAL EXAMPLES AND DISCUSSION 

To illustrate the behavior of the objective functional, we present results of 
some numerical experiments here. Consider a stand consisting of N identical 
square planted trees (for instance, a stand of 25 trees was simulated as 5 rows 
with 5 trees per row). The domain of tree location is the square Xs = 1Om and 
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Fig.3 The amount of intercepted radiation per unit surface (in ~ m - 2 )  by 
the plant stand as a function of tree density. Here X, = Y, = 2m; 
ZC = Zs = 5m; 00 = 60°; po = 45O; LA1 = 15. 

Ys = 10m. The height of the stand, z s ,  is a variable and is equal to the tree 
height. We denote by ~ X C ,  2Yc and 2zc the dimensions of tree crowns. The 
leaf area density function was modelled using the quadratic functionlo (See 
Fig. l a )  

1.6875. L 
z s  (1 - U L ( 3  = - 22)(1 - Yl)(l - ZZ). 

Here x = y ,  Y = where the triplet (zo,yo,z0) denotes 
the origin of the leaf area distribution and L is the leaf area index of one tree 

and z = 
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Fig.4 The amount of intercepted radiation per unit surface (in Wrn-2) by the 
plant stand as a function of tree density for various directions, (0, YO), 
of incident solar radiation. 1: B0 = 80"; 2: 00 = 60°; 3: 00 = 30". kere: 
X c  = YC = 2m; Zc = Z, = 5m; = 45O; LAI = 15. 

- leaf area per unit ground area. This model is consistent with a proposal 
of Rossg based on his measured data. The leaf area index will be varied in 
our calculation. The leaf normal distribution was assumed to be given by an 
erectophile distribution in the polar angle (i.e. gL(+',&) = ?(I - cos(zeL)) and 
uniform in azimuth. We ignore specular reflection in these examples. Reflec- 
tion from the ground is assumed Lambertian: r b  = $7,. The soil reflectivity 
7) was 0.2. These optical properties correspond to average values reported in 
the literature for PAR wavelengthslo. Direct solar radiation is incident along 
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Fig.5 The amount of intercepted radiation per unit surface (in Wm-2) by the 
plant stand as a function of tree density for various values of tree size. 
1: xc = Yc = 2m, zc = 2s  = 5m; 2: Xc = Yc = 2.5m, ZC = Zs = 6m; 
3: XC = YC = 3m, Zc = ZS = 7m. Here: 00 = 60"; (po = 45O; LAI = 15. 

polar angle eo and azimuth po (variables in our calculations). The amount of 
intercepted radiation per unit surface was considered as the objective func- 
tional, i.e., P(1,V)  = &Pu (in Wm-2) where P u ( l , V )  is determined by Eq. 

(9). 
The dependence of the objective functional on tree density is plotted in Fig. 

3. One can separate three parts in its shape. The first is a linear function ( o 5 
p 5 866 d) and corresponds to the ante - GAF stand. This status provides the 
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Fig.6 The amount of intercepted radiation per unit surface (in W n r 2 )  by the 
plant stand as a function of tree density for various values of leaf area 
index. 1: LAI = 10; 2: LA1 = 12.5; 3: LA1 = 15. Here: 80 = 60"; 
PO = 45'; Xc = YO = 2m; ZC = Z, = 5m. 

most tree illumination. The amount of intercepted radiation increases linearly 
with increasing tree density because there are no changes in the radiation field 
incident on the tree crown. The second part (866 5 p 5 c.a. 2500 $) is the 
nonlinear function and it corresponds to the post-CAF and ante-AS state. The 
radiation input in the tree crowns is altered in a complex way with changes in 
tree density and size. It leads to the situation where the sensitivity of a stand 
to variations in tree density is less with respect to the ante - CAP stand. This 
state corresponds to the situation where tree illumination changes as a result of 
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Fig.7 The solution of the equation (13). 1: - w; 2: " vo loi P:t;,i,v:) dt' 

tree growth. It leads to trees competing for more sunlight, which in turn, may 
involve changes in the growth rate, quality of woody biomass as well as death of 

some trees. The tree density p M 2500 corresponds to the stand where trees 
have no free space between them. It means that variations in tree density do 
not lead to considerable changes in the solar radiation incident on the crowns 
because only the top level is open for incidence and the total boundary of trees 
can be idealized as a rough surface. The sensitivity of post - AS to variations 
in tree density is much less as compared to ante - AS stand. In the calculation 
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presented in Fig. 3, we simulated the changes in the phytomedium as follows. 
The tree size was constant. Leaf area density of a domain obtained due to 
intersection of trees is the sum of the leaf area densities of the intersecting 
trees. 

The dependence of the objective functional on tree density at various val- 
ues of the polar angle, eo, of incident solar radiation is shown in Fig. 4. This 
example illustrates the sensitivity of the stand to daytime variation in the 
sun position which underlies the evaluation of the mean value, R ( I , ~ ) ,  of the 
daytime variation of an objective functional. 

The sensitivity of the objective functional to variations in tree size is pre- 
sented in Fig. If the i-th curve, (i = 1 , 2 , 3 )  is the dependence of the 
objective functional on tree density at time, ti, of tree growth, then the value 
of the function p ( t )  at the time t i  can be easily calculated. In this case, we 
have p ( t l )  = 866 z,  p(t2) = 766 d, p ( t 3 )  = 667 E. 

Fig. 6 demonstrates the sensitivity of the objective functional to the vari- 
ations in leaf area index, L. One can see that the value of the critical tree 
density, p, is only weakly influenced as leaf area index is varied. 

5. 

In Fig. 7, the functions - and i{i;:;;)ldt, are presented. Tree 

growth is characterized by tree height, g l ( t )  = &(t), and dimensions of the 
tree crowns, g 2 ( t )  = 2 X c ( t ) ,  g@) = 2 Y c ( t )  and g 4 ( t )  = 2.&(t) (in meter) which 
satisfy the system of differential equations 

SO’ 

d ( t )  = 1 ,  

g i ( t )  = g&( t )  = g ; ( t )  = 0.25, 

with boundary condition, gl(o) = 5m, 92(0) = g 3 ( o )  = g 4 ( o )  = 1 .25m,  i.e. the 
growth rate of trees is one meter per year (poplar stand) and the crown makes 
up 25% of the tree height. The position of sun was fixed (8, = 30°, cpo = 0). 

The point of intersection of the two curves is the solution of equation (13). In 
this case, the optimal value of tree density, p* = p(T)T=, is UOE. 

Thus, the examples presented here illustrate the influence of main char- 
acteristics of a forest stand - tree growth (variation of tree size and leaf area 
index), incident radiation and tree density - on the function p ( t ) .  It means that 
the equation for optimal tree density derived in Section 6 takes into account 
all the above mentioned factors, and hence, its solution provides the optimal 
tree density in accordance with a certain type of plant stand. 
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